

Integration einer Lernfabrik 4.0 in den Unterricht

Industrie 4.0 an beruflichen Schulen in BW

Referenten:

StD Raphael Hörner

Fachberater für Automatisierung am RP Stuttgart

Informationstechnik, Energietechnik Automatisierungstechnik, Datenbanksysteme

r.hoerner@ts-aalen.de

StD Bernd Wiedmann

Fachberater für Mechatronik am RP Stuttgart

Informationstechnik, Fertigungstechnik Automatisierungstechnik, Mechatronik

b.wiedmann@ts-aalen.de

Konzeption und Durchführung landesweiter Lehrerfortbildungen Erstellung der Handreichung "Industrie 4.0" im Auftrag des KM Mitglied von Umsetzungskommissionen, Lehrplankommissionen Konzeption zur Umsetzung, Integration und Weiterentwicklung von Industrie 4.0 an beruflichen Schulen

Agenda

- Ausgangssituation
- Zielsetzung
- Konzeption
- Umsetzungsbeispiel
- Fazit

Ausgangssituation

Integration der Digitalisierung in der Produktion

Förderprojekt Wirtschaftsministerium

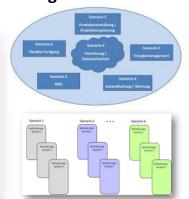
Lernfabriken 4.0

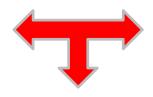
Umsetzungsentwicklung Kultusministerium

- Handreichung 4.0
- · Konzeption Fortbildungsmodule
- Unterstützung der Schulen bei der Umsetzung
- Entwicklung von Lernszenarien

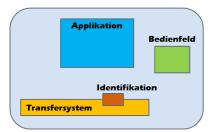
Zielsetzung

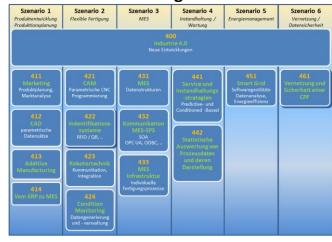
- Gemeinsame Nutzung der Kompetenzen Metall + Elektro + IT
- Musterlösung "Smart Factory" als Basis bei der Umsetzung
- Koordination der Fortbildungen zur Strukturierung der Ausbildungsinhalte
- Schnellstmögliche Qualifikation ALLER Schulen im Bereich aktueller Technologien
- Kurzfristige Verankerung der I4.0 Inhalte in den Abschlussprüfungen
- Nutzung von Synergieeffekten innerhalb und zwischen den Schulen
- Schulen werden zu Innovationscentren und Vorreiter neuer Technologien




Konzeption - Module

Handreichung




- Umsetzungshilfe für den Unterricht
- Berücksichtigung verschiedener Berufe und Schularten
- Untergliederung der fachlichen Inhalte in verschiedene Niveaustufen

Musterlösung

Fortbildungsmodule

- Konkrete Umsetzungsvorschläge
- Niveaudifferenzierte Strukturierung der fachlichen Inhalte
- Gezielte Weiterentwicklung und
 Zusammenführung der Basiskenntnisse zu
 I4.0 Fachkompetenz

Konzeption - Musterlösung

- Übertragung der Szenarien der Handreichung auf ein konkretes Unterrichtsprojekt
- Ganzheitlicher Ansatz
- O Durchgängiges Konzept durch Implementierung aller fachlichen Inhalte an einem praxisnahem Beispiel
- Grundlagenlabormodell "Industrie 4.0" als Basis, damit alle Schulen, auch ohne Fördermittel das Konzept realisieren können
- o Grundlage der landesweiten Lehrerfortbildungskonzeption "Industrie 4.0"
 - d.h. die Fortbildungsmodule orientieren sich überwiegend an diesem Beispiel
- Zukünftige Standards und Technische Richtlinien für die Prüfung orientieren sich ebenfalls an der
 Musterlösung und bieten somit die Basis für eine praxisnahe Ausbildung

italisierung

Integration einer Lernfabrik 4.0 in den Unterricht

Integration der Lernfabrik in den Unterricht der TS Aalen

Welche Komponenten beinhaltet die Lernfabrik?

1. Cyber Physical Factory, CPF

- Eine smarte Anlage bestehend aus 15 Stationen
- Enthält einfache sowie komplexe Stationen
- Fertigung von kleinen individuellen Messgeräten
- Fahrerloses Transportsystem
- Manufacturing Execution System

Unterrichtsinhalte an der CPF

- Aufzeigen von Zusammenhängen einer realen smarten Produktionsanlage
- Analyse von modernen Technologien
- Aufzeigen von Problemstellungen
- Arbeiten in einer smarten Produktion

Integration der Lernfabrik in den Unterricht der TS Aalen


Welche Komponenten beinhaltet die Lernfabrik?

2. Grundlagenlaboreinheiten, CP-Labs

- Auf die CPF abgestimmte Labormodelle mit den Fertigungsschritten Bohren, Pressen und Wenden
- Modelle stellen ein komplettes cyberphysisches System dar
- Inzwischen über 30 Stationen in den Labors der TS Aalen

Unterrichtsinhalte an der CPF

- Pro Station maximal 2 Schüler
- Aktives Entwickeln, Projektieren, Programmieren, Justieren und in Betrieb nehmen durch die Schüler
- Sämtliche Smart Factory Technologien sind an diesen Modellen aktiv erlernbar

Ziele und Fragen zur Unterrichtseinheit "Identifikation von Werkstücke"

- Wieso müssen Werkstücke in einer flexiblen Fertigung identifiziert werden?
- Welche Möglichkeiten zur Identifikation von Werkstücken gibt es?
- Welche Inhalte müssen die Schüler je nach Beruf und Schulart erlernen und können?

QR-Code

NFC

RFID

Binäre Sensoren

Industrie 4.0

Integration einer Lernfabrik 4.0 in den Unterricht

Unterrichtsbeispiel: Identifikationssysteme

Auszug aus der Handreichung Industrie 4.0

	Anforderungse	BEREICH 1					
2	Szenario 2: Flexible Fertigung		Anforderungse	BEREICH 2		EREICH 3	
2.1	Grundprinzipien von flexiblen Ferti- gungsverfahren nennen Grundprinzipien von Transportsystemen nennen	Generative Fertigu 2 CAD/CAM 2.1 Transferband, Förd 2.2	Szenario 2: Flexible Fertigung Grundprinzipien von flexiblen Fertigungsverfahren analysieren Unterschiedliche Transportsysteme ana-	Generative Fertigungsverfa CAD/CAM Transferband, Förderkette,		Szenario 2: Flexible Fertigung Grundprinzipien von flexiblen Fertigungsverfahren vergleichen, beurteilen und anwendungsbezogen auswählen	Generative Fertigungsverfahren, CNC, CAD/CAM
2.3	Verschiedene Identifikationssysteme beschreiben	RFID, QR-Code, B	lysieren Unterschiede von Identifikationssystemen erläutern	RFID, QR-Code, Barcode, I		Unterschiedliche Transportsysteme ver- gleichen, beurteilen und anwendungsbe- zogen auswählen	Transferband, Förderkette, Rundtisch
2.4	Funktionsweisen von Handhabungssys- temen erläutern	Roboter, pneumat achsen, Greifersys 2.4	Handhabungssysteme an einen Prozess	Roboter, pneumatischer U	2.3	Identifikationssysteme auswählen und anwenden	RFID, QR-Code, Barcode, binäre Sensorik
2.5	Steuerungsprogramme für Fertigungs- einheiten beschreiben	Auftragsbezogene programme 2.5	anpassen Steuerungsprogramme für Fertigungs-	achsen, Greifersysteme Auftragsbezogene statische	2.4	Handhabungssysteme in einen Prozess einbinden	Roboter, pneumatischer Umsetzer, Linear- achsen, Greifersysteme
2.6	Steuerungssysteme und deren Komponenten erklären	CPU, Signalmodule 2.6	einheiten programmieren Steuerungssysteme und deren Kompo-	programme CPU, Signal- und Funktions	2.5	Steuerungsprogramme für Fertigungs- einheiten projektieren	Auftragsbezogene statische Steuerungs- programme
2.7	Programmteile von Steuerungssystemen programmieren	Modulare und biblic mierung, Ablaufste 2.7	nenten beurteilen Programmteile von Steuerungssystemen	systeme, Netzwerktopologie Modulare und bibliotheksfäl		Steuerungssysteme auswählen und mit den Komponenten verbinden	CPU, Signal- und Funktionsmodule, Bussysteme, Netzwerktopologie
2.8	Anlage in Betrieb nehmen	Messprotokolle Inbetriebnahmepro Predictive Mainten: ^{2.8}	entwickeln Anlage in Betrieb nehmen und Inbetriebnahmedaten protokollieren	mierung, Ablaufsteuerung Messprotokolle Inbetriebnahmeprotokolle	2.7	Programmteile von Steuerungssystemen projektieren	Modulare und bibliotheksfähige Programmierung, Ablaufsteuerung
2.9	Anlage bewerten und optimieren	Lastenheft Pflichtenheft CE-Zertifizierung (F	inbediebitatinedaten protokolleren	Condition Monitoring Energiemanagement Predictive Maintenance	2.8	Anlage in Betrieb nehmen, Inbetriebnahmedaten protokollieren und daraus Instandhaltungsdaten gene- rieren	Messprotokolle Inbetriebnahmeprotokolle Produktivität Condition Monitoring
		2.9	Anlage bewerten und optimieren	Lastenheft Pflichtenheft Energieleitziele und Energie CE-Zertifizierung (Prozesss			Energiemanagement Product Lifecycle Management (PLM) Predictive Maintenance Engineering
					2.9	Anlage bewerten und optimieren	Lastenheft Pflichtenheft Energieleitziele, Energiekennzahlen Clean Production CE-Zertifizierung (Prozesssicherheit)

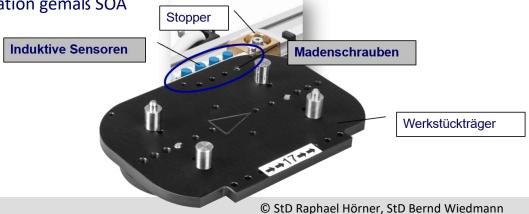
Exemplarische Vorgehensweise

1. Cyber Physical Factory, CPF

Demonstration an der Anlage, wieso in einer smarten Fertigung die Werkstücke identifiziert werden müssen

=> Aufzeigen und erarbeiten des Fertigungsablauf entsprechend SOA

- Auf welche Art(en) werden an der CPF Werkstück identifiziert?
 => RFID
- Schüler beobachten und bedienen die Werkstückidentifikation über das HMI an den einzelnen Stationen eines Fertigungsauftrags
- Welche anderen Arten zur Identifikation sind an der CPF zu finden? Welche Aufgaben haben diese?



Exemplarische Vorgehensweise

2. Grundlagenlaborsystem, CP-Lab

- Welche Möglichkeiten bietet das CP-Lab zu Identifikation von Werkstücken? => Binäre ID und RFID
- Für alle Berufe und Schularten geeigneter Einstieg: Binäre Identifikation Inhalte:
 - Duales Zahlensystem

 Entwicklung einer Logik / Programms zur Ermittlung der Werkstücknummer anhand binären Sensoren unter Berücksichtigung der Kommunikation gemäß SOA

Exemplarische Vorgehensweise

2. Grundlagenlaborsystem, CP-Lab

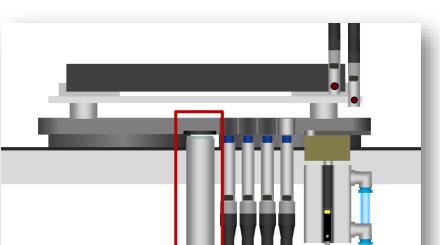
- Identifikation über RFID
 - Wieso ist RFID professioneller und effektiver als eine binäre Identifikation?
 - o <u>Inhalte:</u>

Das Thema RFID ist sehr komplex

=> Hier ist eine **Niveaudifferenzierung** im Unterricht der einzelnen Berufe zwingend erforderlich!

Szenarien		Szenario 1		Szenario 2		Szenario 3		Szenario 4		Szenario 5			Szenario 6					
Anforderungsbereiche	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Berufe und Schulart																		
Industriemechaniker	X	S		Х				88		Х			Х	9		8 8		6,
Produktionstechnologe	X			2	Х	-	Х	8		0	Х		Χ			Χ		E,
Mechatroniker	X				X		Х				X		Χ			Χ		
Elektroniker Automatisierungstechnik	X			2 - 4	X			Х			Х			Х		8	X	
Elektroniker Betriebstechnik		G		Х						Χ			Χ			Χ		
Fachinformatiker	X	G:		3-3				Χ		Χ				S		8		X
Fachschule Metalltechnik		G:	Х	2 - 4	X		Х				X		Χ			Χ		
Fachschule Elektrotechnik		X		3 3		Х			Х			Х			Х	2	X	
Fachschule Automatisierungst./Mechatronik		X				X		Х				Х			Х		X	
Fachschule Informationstechnik		X						S8	Х	Χ			Χ	-		2 - 3		X

Integration einer Lernfabrik 4.0 in den Unterricht

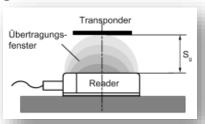

Unterrichtsbeispiel: Identifikation von Werkstücken mittels RFID

Exemplarische Vorgehensweise

2. Grundlagenlaborsystem, CP-Lab

- 1. Gründe für den Einsatz von RFID-Systeme
- 2. Aufgabe eines RFID Schreib-/Lesegeräts
- 3. Aufgabe eines Transponders
- 4. Korrekte Montage von RFID Schreib-/Lesegeräte
- 5. Lesen und Beschreiben von Transponder über das HMI

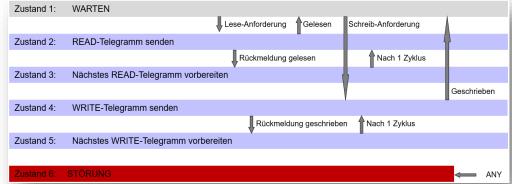
Unterrichtsbeispiel: Identifikation von Werkstücken mittels RFID


Exemplarische Vorgehensweise

2. Grundlagenlaborsystem, CP-Lab

Inhalte Niveaustufe 2 am Beispiel des "Elektroniker für Automatisierungstechnik"

- Siehe Inhalte Niveaustufe 1
- 2. Elektrotechnische Grundlagen zu RFID
- 3. Projektieren und Inbetriebnahme von RFID Geräten
- 4. Aufruf und Beschaltung von RFID-Funktionsbausteine in der SPS


Unterrichtsbeispiel: Identifikation von Werkstücken mittels RFID

Exemplarische Vorgehensweise

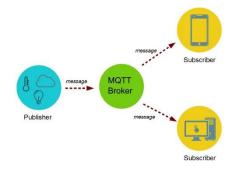
2. Grundlagenlaborsystem, CP-Lab

Inhalte Niveaustufe 3 am Beispiel des "Fachschülers Elektrotechnik/Informatik"

- Siehe Inhalte Niveaustufe 2
- Detaillierte Funktionsweise von RFID-Systemen
- 3. Technische Analyse zur Kommunikation mit RFID Schreib-/Lesegeräten
- Entwicklung von Funktionsbausteine für die Kommunikation einer SPS mit einem RFID Schreib-/Lesegerät

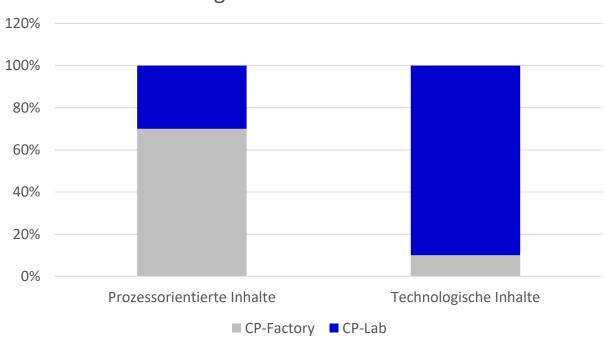
Integration vieler weiterer Themen und Technologien in den Unterricht

Parametrische CNC-Programmierung



Identifikation

Strukturierte, objektorientierte **SPS - Programmierung**


Wertstromanalyse

Integration der Lernfabrik in den Unterricht der TS Aalen

Erfahrungswerte der letzten 3 Jahre

Fragen / Diskussion

